Osteoporosis

Kathryn M Diemer, MD
Clinical Director, Bone Health Program
Washington University School of Medicine
Identifying Patients with Low Bone Strength

Bone strength primarily reflects the integration of bone quality and bone mineral density.¹

Low Bone Strength

==

Poor Bone Quality

Bone Characteristics
1. Rate of bone remodeling
2. Trabecular connectivity
3. Degree of mineralization
4. Damage accumulation

Clinical Indicators
1. Increasing age
2. Minimal trauma fractures

Low BMD

Easy to obtain through a DXA test

DXA = dual-energy x-ray absorptiometry.
Bone Remodeling Process

Osteoclasts → Resorption Cavities

Lining Cells → Osteoblasts

Bone → Osteoid

Mineralized Bone
Dual Energy X-ray Absorptiometry
WHO Classification of Postmenopausal Osteoporosis, T-scores can only be used for postmenopausal women and men over 50

<table>
<thead>
<tr>
<th>Condition</th>
<th>T- Score (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Equal to -1.0 or higher</td>
</tr>
<tr>
<td>Low Bone Mass (Osteopenia)</td>
<td>Between -1.0 and -2.5</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Equal to -2.5 or lower</td>
</tr>
<tr>
<td>Severe Osteoporosis</td>
<td>Equal to -2.5 or lower with fracture</td>
</tr>
</tbody>
</table>

Derivation of WHO Classification

• Only postmenopausal Caucasian women
 • Not men, premenopausal women, children
 • No other racial or ethnic groups
• Only PA spine, hip and forearm DXA
 • Not lateral spine, heel, finger, etc
• Only for central DXA and forearm
 • Not peripheral DXA (other than forearm)
 • Not for QCT, QUS, RA, etc
Image not for diagnostic use

TOTAL BMD CV FOR L1 - L4 1.0%

<table>
<thead>
<tr>
<th>Region</th>
<th>Est.Area (cm²)</th>
<th>Est.BMC (grams)</th>
<th>BMD (gms/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>10.78</td>
<td>7.40</td>
<td>0.692</td>
</tr>
<tr>
<td>L2</td>
<td>10.94</td>
<td>8.28</td>
<td>0.757</td>
</tr>
<tr>
<td>L3</td>
<td>12.54</td>
<td>10.67</td>
<td>0.851</td>
</tr>
<tr>
<td>L4</td>
<td>15.37</td>
<td>13.20</td>
<td>0.859</td>
</tr>
<tr>
<td>TOTAL</td>
<td>49.55</td>
<td>39.55</td>
<td>0.798</td>
</tr>
</tbody>
</table>

Note: The image includes a lumbar spine scan with various measurements and calculations related to bone density analysis.
BMD(L1-L4) = 0.798 g/cm²

<table>
<thead>
<tr>
<th>Region</th>
<th>BMD</th>
<th>T(30.0)</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.692</td>
<td>-2.12</td>
<td>-1.33</td>
</tr>
<tr>
<td>L2</td>
<td>0.757</td>
<td>-2.47</td>
<td>-1.58</td>
</tr>
<tr>
<td>L3</td>
<td>0.851</td>
<td>-2.12</td>
<td>-1.18</td>
</tr>
<tr>
<td>L4</td>
<td>0.859</td>
<td>-2.34</td>
<td>-1.38</td>
</tr>
<tr>
<td>L1-L4</td>
<td>0.798</td>
<td>-2.26</td>
<td>-1.35</td>
</tr>
</tbody>
</table>

- Age and sex matched
- T = peak bone mass
- Z = age matched
k = 1.140 d0 = 47.5(1.000H) 5.713

D0204978J Tue Feb 4 14:44 1997
Name:
Comment: SPINE & LT HIP
I.D.: 0248840 Sex: F
S.S.#: - Ethnic: W
ZIP Code: Height: 5' 0"
Operator: VJL Weight: 115
BirthDate: Age:
Physician:

Image not for diagnostic use

TOTAL BMD CV 1.0%
C.F. 1.028 1.020 1.008

<table>
<thead>
<tr>
<th>Region</th>
<th>Est.Area (cm²)</th>
<th>Est.BMC (grams)</th>
<th>BMD (gms/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck</td>
<td>4.60</td>
<td>2.68</td>
<td>0.583</td>
</tr>
<tr>
<td>Troch</td>
<td>7.37</td>
<td>4.99</td>
<td>0.676</td>
</tr>
<tr>
<td>Inter</td>
<td>14.09</td>
<td>12.81</td>
<td>0.909</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25.06</td>
<td>20.48</td>
<td>0.786</td>
</tr>
<tr>
<td>Ward’s</td>
<td>1.15</td>
<td>0.60</td>
<td>0.521</td>
</tr>
</tbody>
</table>

Midline (88,102)-(148, 54)
Neck -49 x 15 at [24, 18]
T troch 11 x 36 at [0, 0]
Ward’s -11 x 11 at [4, 6]
BMD(Neck[L]) = 0.583 g/cm²

<table>
<thead>
<tr>
<th>Region</th>
<th>BMD</th>
<th>T</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck</td>
<td>0.583</td>
<td>-3.12</td>
<td>65%</td>
</tr>
<tr>
<td>Troch</td>
<td>0.676</td>
<td>-0.51</td>
<td>94%</td>
</tr>
<tr>
<td>Inter</td>
<td>0.989</td>
<td>-1.70</td>
<td>79%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.786</td>
<td>-1.58</td>
<td>81%</td>
</tr>
<tr>
<td>Ward’s</td>
<td>0.521</td>
<td>-2.50</td>
<td>65%</td>
</tr>
</tbody>
</table>

- Age and sex matched
- T = peak bone mass
- Z = age matched
Forearm: Optimal Positioning

- Forearm is centered
- Radius and ulna straight
 - Aligned with long axis of table
- Distal cortex of radius and ulna visible
- No avoidable artifacts
BMD is a Strong Predictor of Fracture

Fracture Rate Per 1,000 Person-Years

Data available on request from Merck & Co., Inc. Please specify 20350477(3)-FOS.
Age and Bone Mass as Predictors of Osteoporotic Fracture

FRAX®: Gauging 10-Year Fracture Probability

- FRAX is a WHO algorithm to determine 10-year fracture risk
- Takes into account BMD and specific risk factors
- Determines patient’s absolute fracture risk as opposed to relative risk
- Identifies the high-risk patients who could benefit from treatment
- FRAX web site at: http://www.shef.ac.uk/FRAX/

NOF Guidelines

- www.shef.ac.uk/FRAX/

- Treatment is recommended for:
 - Pts with hip or vertebral fractures
 - Pts with osteoporosis T-score – 2.5
 - Postmenopausal men or women with low bone mass -1 to -2.5 at the FN, total hip or total spine and a ten year hip fracture probability of >3% or a ten year all major osteoporosis related fracture of 20% based on the US adapted WHO absolute risk model
Precision

- Expresses reproducibility or consistency of repeat measurements
- Precision error helps determine how much of a change in BMD is required to know that the difference is real
Impact of Vertebral Fractures

- Pain
- Possible permanent disfigurement
- Loss of height
- Loss of self-esteem
- Increased risk of hip fracture
- Increased morbidity
250,000 Hip Fractures Each Year

- Up to 24% excess mortality within 1 year\(^1\)
- Nearly 65,000 American women die from complications of hip fracture each year.\(^2\)
- 50% of hip fracture survivors are permanently incapacitated\(^3\)
- 20% of hip fracture survivors require long-term nursing home care\(^4\)
Distal Forearm Fractures

- Third most common osteoporotic fracture
- Most are caused by fall on outstretched hand
- Diagnosis
 - Most are diagnosed clinically
 - Often confirmed with radiography
Does Calcium Increase Vascular Risk?
Calcium Supplements and Heart Events

• Calcium subcommittee of the Professional Practice Committee of ASBMR, “Commentary on Calcium Supplements and Cardiovascular Events”, JCD, vol 15, no 2, 130 – 134, 2012

• Data reviewed from randomized Controlled trials and 3 meta-analyses
 • Maintenance of target levels for the supplement and placebo group are difficult – compliance in the supplement group must be 80%
 • Clear, definable and fully adjudicated endpoints must be used
 • The most appropriate and stringent methods of data evaluation must be applied
Does Calcium Increase Vascular Risk?

Calcium Supplements and Heart Events

- Tang meta-analysis was noted for benefit of calcium intake, NNT was 63 patients for 3 – 5 years to prevent one fracture, in elderly individuals with low calcium intake, NNT was 30
- Bolland:
 - 12 RCT of calcium supplementation vs placebo
 - Large clinical trials of subjects receiving or not receiving calcium
 - Adverse cardiovascular events were not the primary outcome
 - Cardiovascular outcomes were obtained from self reports, hospital admissions and death certificated
 - Data was only available for 63% of the patients
 - Data did not reach statistical significance for stroke or the composite of MI, stroke or sudden death
Calcium and Vitamin D Intake and Mortality

- Canadian Multicentre Osteoporosis Study (JCEM, May 24, 2012, doi:10.1210/jc.2013-1516)
- Population based longitudinal cohort 115-2007
- 9033 participants
- Among women (over age 25), calcium supplement users had a lower risk of mortality than non-users HR 0.78 (95% CI 0.66-0.92)
- No dose response effect noted among users, there was attenuation of the association, showing statistically significant lower mortality only for supplement users with a daily dose of <1000mg
Prevalence of Vitamin D Deficiency in Postmenopausal Women Receiving Osteoporosis Therapy

![Graph showing prevalence of vitamin D deficiency in postmenopausal women receiving osteoporosis therapy.](image-url)
Relationship Between Serum 25-(OH)D and PTH in Medical Inpatients

N = 290.

Commonly Used Biochemical Markers of Bone Turnover

- **Formation**
 - Bone-specific alkaline phosphatase (BSAP)
 - Osteocalcin (OC)
 - Propeptide of type I collagen (P1NP)

- **Resorption**
 - N-telopeptide of type I collagen (NTX)
 - C-telopeptide of type I collagen (CTX)
Vertebral Fracture Reduction Trials

FIT VFA

Alendronate

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline LS-BMD</td>
<td>–2.3</td>
</tr>
<tr>
<td>Mean age</td>
<td>71 (post menopausal)</td>
</tr>
<tr>
<td>Drug</td>
<td>5 or 10 mg daily</td>
</tr>
<tr>
<td>Calcium intake</td>
<td>1000 mg daily</td>
</tr>
<tr>
<td>Design</td>
<td>randomized, double-blind placebo controlled</td>
</tr>
<tr>
<td>% with prevalent VFx</td>
<td>100%</td>
</tr>
<tr>
<td>Mean prevalent VFXs</td>
<td>1 VFX</td>
</tr>
<tr>
<td>Study duration</td>
<td>3 yrs.</td>
</tr>
<tr>
<td>Primary endpoint</td>
<td>VFx</td>
</tr>
<tr>
<td>Secondary endpoint</td>
<td>NonVFx</td>
</tr>
</tbody>
</table>

NEJM 3/04 Ten year data

Diagram showing the distribution of participants over time.

- 994 (804) Underwent randomization
 - 3-Year Study
 - 199 (160) Assigned to 20 mg of alendronate for yr 1-2 and 5 mg for yr 3
 - 143 (114) Assigned to 5 mg of alendronate
 - 115 (97) Assigned to placebo
 - 202 (164) Assigned to 5 mg of alendronate
 - 145 (112) Assigned to 10 mg of alendronate
 - 196 (158) Assigned to 10 mg of alendronate
 - 151 (120) Assigned to 10 mg of alendronate
 - 113 (92) Assigned to 5 mg of alendronate
 - 397 (322) Assigned to placebo
 - 288 (232) Assigned to 10 mg of alendronate
 - Ineligible for further study
 - 1st Extension, Years 4-5
 - 143 (114) Assigned to 5 mg of alendronate
 - 2nd Extension, Years 6-7
 - 115 (97) Assigned to placebo
 - 3rd Extension, Years 8-10
 - 83 (51.9% of 160) Assigned to placebo
 - 78 (47.6% of 164) Assigned to 5 mg of alendronate
 - 86 (54.4% of 158) Assigned to 10 mg of alendronate
Alendronate 10 Year Efficacy Data Urinary NTx

Mean Percent Change ± SE

Mont

Placebo*
ALN 5 mg
ALN 10 mg
ALN 20 mg/ALN 5 mg/Placebo

*Patients enrolled in the original, 3 year study
Alendronate 10 Year Efficacy Data
Bone Specific Alkaline Phosphatase

Mean Percent Change ± SE

Placebo*
ALN 5 mg
ALN 10 mg
ALN 20 mg/ALN 5 mg/Placebo

*Patients enrolled in the original, 3 year study
FLEX Trial: Fracture Assessment

ALN-treated patients for 5 years followed by ALN for 5 more years or placebo

- Yrs 5-10: Placebo
- Yrs 5-10: ALN (5mg n=329 / 10mg n=333)

Bar chart showing:
- Morphometric vertebral fractures
- Clinical vertebral fractures
- Non-vertebral fractures
- Hip fractures

Incidence:
- Morphometric vertebral fractures: ns
- Clinical vertebral fractures: 55% (16%-77%)
- Non-vertebral fractures: ns
- Hip fractures: ns
*Patients received either placebo or alendronate 5 mg once daily for the first two years and either placebo or alendronate 10 mg once daily for the 3rd year with maintenance of double-blind. Black, D.M. et al. Randomized trial of alendronate on the risk of fracture in women with existing vertebral fractures. *Lancet.* 1996; 348: 1535–1541.
ZOL 2313 – ZOL 5mg x1 vs ALN 70mg weekly - βCTX levels

Mean (±SE) Serum β-CTX (ng/mL)

‡p < .0001

Bone (2007); 41: 122-128
ZOL 2313 – ZOL 5mg x1 vs ALN 70mg weekly - P1NP

‡P < .0001

Bone (2007); 41: 122-128
Common (≥5% in ZOL) Post-Dose Symptoms Occurring Within 3 Days After Infusion

- **Pyrexia**: 15% incidence
- **Myalgia**: 2% incidence
- **Flu-like illness**: 8% incidence
- **Headache**: 6% incidence
- **Arthralgia**: 5% incidence

Placebo values cross-hatched

Osteonecrosis of the Jaw

- Although there is no universally accepted definition of ONJ, several authors have observed that ONJ is an oral cavity lesion characterized by 1 or more spots of bare maxillary or mandibular bone, in the absence of local malignancy or radiation therapy to the head or neck.¹–⁶

- Known risk factors for ONJ include:
 - Diagnosis of cancer
 - Concomitant therapies (eg, chemotherapy, radiotherapy, and corticosteroids)
 - Poor oral hygiene
 - Smoking
 - Comorbid disorders (eg, pre-existing dental disease, anemia, coagulopathy, and infection)

- The mechanism by which ONJ occurs is currently uncertain.¹

Exposed Bone in ONJ: Internal Oblique Ridge

Photograph courtesy of Leon Assael, DMD.
Stage 3

- Exposed bone
- Pathologic fracture
- Soft tissue inflammation or infection not responsive to antibiotics
- Large amount of bone involved
- Extraoral fistula
- Osteolysis
Definition of Medication Related Osteonecrosis of the Jaw:
- Current or previous treatment with anti-resorptive or antiangiogenic medications
- Exposed bone or bone that can be probed through an intraoral or extraoral fistula in the maxillofacial region that has persisted for more than eight weeks and
- No history of radiation therapy to the jaws or obvious metastatic disease to the jaws
Commonly misdiagnosed conditions include:

- Alveolar osteitis
- Sinusitis
- Gingivitis
- Caries
- Periapical pathology
- Fibro-osseous lesion
- Sarcoma
- Sclerorosing osteomyelitis
- TMJ disorders
Recommendations for patients taking bisphosphonates for osteoporosis:

1. The efficacy of utilizing a systemic marker of bone turnover to assess the risk of developing jaw necrosis in patients at risk has not been validated. Therefore, the use of markers of bone turnover is not recommended.

2. For individuals who have taken an oral BSP for less than four years and have no clinical risk factors no alteration or delay in the planned surgery is necessary. This includes any and all procedures common to oral and maxillofacial surgeons, periodontists and other dental providers.
3. For those patients who have taken an oral BSP for less than four years and have also taken corticosteroids or antiangiogenic medications concomitantly, the prescribing provider should be contacted to consider discontinuation for two months prior to the procedure.

4. For those who have taken an oral BSP for more than four years with or without concomitant therapy, the prescribing provider should be contacted to consider discontinuation for the antiresorptive medication for two months prior to the procedure.
ONJ in the Reclast trials

- HORIZON PFT – Reclast Arm: 3,862 women, placebo: 3,852, three years of treatment, one ONJ in each arm.

- HORIZON #2 – post hip fracture trial: Reclast: 1,065, placebo 1,062 – no ONJ reported

- HORIZON #3 – Glucocorticoid induced osteoporosis: two year study: Reclast: 416, alendronate 417, no ONJ reported

- HORIZON #4 Male Osteoporosis: Reclast: 154, placebo: 148, no ONJ reported

- HORIZON #5 Osteopenia, every two year infusion: Reclast: 198, placebo: 202, no ONJ reported
ONJ with denosumab

• FREEDOM trial – three year pivotal fracture trial – no cases seen in either arm.

• FREEDOM extension 10 years- no placebo arm, patients were given questionnaires to fill out every six months. ONJ cases were reported from 3,536 patients. 7/8 had oral procedures, the one who did not had dentures. 4.2/10,000 patient years.
Balancing Risks vs. Benefits

Slide courtesy of E Michael Lewiecki

3National Center for Health Statistics
4JADA, 2006; 137:1144-1150
Femur Fractures

• Case reports of atypical femur fractures have been published since 2005
• An increasing number of case reports occurred 2008 – 2010
• The low trauma fractures are described as horizontal with cortical thickening, bilateral fractures have been reported.
• Often, a “prodrome” of leg pain with a cortical stress reaction is seen on prefracture radiographs
Femoral Fracture - spontaneous
Bisphosphonates and Fractures of the Subtrochanteric or Diaphyseal Femur

• NEJM March 24, 2010
• Analysis of Fracture Intervention Trial, Fit Extension (FLEX), and HORIZON (Reclast) Trial
• 14,195 women in these trial
• 12 fractures were classified as subtrochanteric or diaphyseal (rate 2.3 per 10,000 patient-years)
• Relative hazard rate was 1.03 (CI 0.06 – 16.46)
Bone Turnover in Bone Biopsies of Patients with Low Energy Cortical Fractures

- All available radiographs of hip fractures were reviewed.
- Exclusions: pathological fractures, periprosthetic fractures, and high trauma fractures.
- In all three trials, there were 283 hip or femur fractures.
- After the above exclusions there were 134 fractures.
- There were 12 subtrochanteric fractures.
- In the FIT trial, there were two fractures that met criteria – rate .8 per 10,000 fracture-years.
- In FLEX, there were 4 fractures that met criteria: rate 6.3 per 10,000 patient years.
- HORIZON: 5 women had six fractures that met criteria – rate: 2.8 per 10,000 patient years.
Atypical Femur Fractures Increased After 5 Years of Bisphosphonate Use
Adjusted OR and 95% CI

- **Atypical hip fractures**
 - Cases (n = 716) versus Controls (n = 3580)
 - Zero to 5 years of treatment: NS
 - Long term (5 years or more): 2.74 (1.25-6.02)

- **Typical hip fractures**
 - Cases (n = 9723) versus Controls (n = 48564)
 - Intermediate (3-5 years): 0.86 (0.73-1.00)
 - Long term (5 years or more): 0.76 (0.63-0.93)

Park-Wyllie LY et al JAMA 2011;305:783-789

If you treat 1000 women with bisphosphonates for 5 years prevent 35-50 non-vertebral fractures, 50-115 vertebral fractures. You might cause 5 atypical femur fractures

ASBMR Task Force, J Bone Miner Res, 2010
Atypical Femoral Fracture Incidence Increases With Duration of Bisphosphonate Exposure

- 1.8 million Kaiser Permanente enrollees ≥ 45 years of age
- Potential AFF identified by ICD-9 diagnosis and CPT procedure codes
 - All radiographs reviewed
- 142 femur fractures met ASBMR criteria for AFF
 - 128 (90%) had previous BP exposure
 - 14 (10%) no prior BP exposure
 - Age adjusted incidence rose with increasing duration of BP exposure

~ 1 per 1000 pt-yrs after 10 years

Adapted from Dell RM, J Bone Miner Res, 2012;27:2544-50
To Defend Against Bone Loss, the Body Produces a Protein Called Osteoprotegerin (OPG)

Osteoclast Activation
- OPG
- RANKL
- RANK

Osteoclast Formation, Function, and Survival Inhibited by OPG
- CFU-M
- Pre-Fusion Osteoclast
- Multinucleated Osteoclast
- Mature Osteoclast

Growth Factors, Hormones, Cytokines

Do not copy or distribute. Amgen 2005.
The Effect of Denosumab on Fracture Risks at 36 Months

Phase 3: The FREEDOM Trial

- **New Vertebral**
 - Placebo: 7.2%
 - Denosumab: 2.3%
 - Difference: 63%
 - \(P < 0.001 \)

- **Nonvertebral**
 - Placebo: 8.0%
 - Denosumab: 6.5%
 - Difference: 20%
 - \(P = 0.01 \)

- **Hip**
 - Placebo: 1.2%
 - Denosumab: 0.7%
 - Difference: 40%
 - \(P = 0.04 \)

The Percent Change in Bone Mineral Density Over 36 Months With Denosumab

Phase 3: The FREEDOM Trial

Bone Mineral Density Substudy
n = 441

- Placebo
- Denosumab 60 mg Q6M

Lumbar Spine

Total Hip

Percent Change in BMD

Intent-to-treat, last observation carried forward analysis
*P < 0.001 for denosumab vs placebo

Cummings SR, et al. [Published online ahead of print August 11, 2009]. N Engl J Med. doi: 10.1056/NEJMoa0809493. Copyright © 2009 Massachusetts Medical Society. All rights reserved.
Effects of Treatment on Biochemical Markers of Bone Turnover Over 12 Months
Phase 3: The STAND Trial

CTx-1

- Alendronate 70 mg QW
- Denosumab 60 mg Q6M

P1NP

Values are medians; error bars represent the interquartile range.

- Analysis carried out in the observed data set; missing values were not imputed.
- \(P < 0.0001 \)

Study Design

The Pivotal Phase 3 Study – Extension

- 7-year, international, multicenter, open-label, single-arm extension study
- Primary endpoint: safety and tolerability of up to 10 years of Prolia® administration

Pivotal Phase 3 Fracture Trial

- N = 7808
- n = 3906
 - Placebo SC Q6M
 - Denosumab 60 mg SC Q6M

- 5 years total treatment

Extension Study

- N = 4550
- 1 year cross-over
 - Denosumab 60 mg SC Q6M
- n = 2207

- Ongoing
 - Calcium and Vitamin D
 - n = 2343
 - Continued (received denosumab in pivotal phase 3 fracture trial)

Key Inclusion Criteria

- Must have completed the pivotal phase 3 fracture trial (received denosumab or placebo)
- Not receiving any other osteoporosis medications

Adapted from Chapurlat R, et al. Presented at: American College of Rheumatology Annual Scientific Meeting; November 7-11, 2010; Atlanta, GA.
Raloxifene HCl as a SERM

3-Dimensional Model of Raloxifene

- Basic side chain
- Benzothiophene moiety

Estrogen antagonist
- Uterus
- Breast

Estrogen agonist
- Bone
- Serum lipids

Raloxifene is not an estrogen, progestin, or hormone.
Effect of raloxifene HCL in Postmenopausal Women With or Without Preexisting Vertebral Fractures

The MORE trial was a prospective, randomized, double-blind, placebo-controlled, clinical trial of 7705 postmenopausal women (mean age 67) with osteoporosis (-2.6 at the spine; -3.2 at the femoral neck). All were given calcium (500 mg/day) and vitamin D (400-600 IU/day).
Fig. 1 The median percentage change from baseline to 1 year in the biochemical markers of bone metabolism, type I procollagen N-terminal propeptide (PINP), serum osteocalcin (OC), bone-specific alkaline phosphatase (BSAP), and urinary type I collagen C-telopept...

Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk

J.-Y Reginster, S Sarkar, B Zegels

Bone, Volume 34, Issue 2, 2004, 344 - 351

http://dx.doi.org/10.1016/j.bone.2003.10.004
Cumulative incidence of adjudicated invasive breast cancers per 1000 women over the 8 years from randomization in the MORE trial to the end of the CORE trial for the 7705 MORE participants.

HR = 0.34
(95% CI = 0.22 to 0.50)

$P < .001$

Placebo (N=2576)

Raloxifene (N=5129)

1.4 cases per 1000 woman-years

4.2 cases per 1000 woman-years

Mode of delivery determines skeletal response to PTH

once-daily

- osteoblast apoptosis
- bone lining cells
- cbfa1 (pre-OB)

osteoblast number/function

- bone formation
- bone mass/strength

continuous

- RANKL
- OPG

osteoclast

- bone resorption
- serum Ca++

Stimulate osteoblast differentiation

Stimulates osteoclast differentiation
Teriparatide (rDNA origin) injection reduces the risk of 1 new vertebral fractures.

Risk Reduction
- Relative: 65%
- Absolute: 9.3%

(RR 0.35, 95% CI, 0.22 to 0.55)
(Absolute Risk: Placebo 14.3%; FORTEO 5.0%, P <0.001)

Teriparatide (rDNA origin) injection Reduces the Risk of Nonvertebral Fragility Fractures

1 defined as occurring with minimal trauma

<table>
<thead>
<tr>
<th>Placebo (n=544)</th>
<th>TERI (n=541)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>14</td>
</tr>
</tbody>
</table>

Risk Reduction
Relative: 53%
Absolute: 2.9%

(RR 0.47, 95% CI, 0.25 to 0.88)
AR: Placebo 5.5%; FORTEO 2.6%, P <0.05

1 defined as occurring with minimal trauma
Biochemical Markers

JCI Vol 102 (8) Oct 1998 PTH in Steroid induced Osteoporosis
In male and female rats, teriparatide caused an increase in the incidence of osteosarcoma (a malignant bone tumor), that was dependent on dose and treatment duration. The effect was observed at systemic exposures to teriparatide ranging from 3 to 60 times the exposure in humans given a 20-mcg dose. Because of the uncertain relevance of the rat osteosarcoma finding to humans, teriparatide should be prescribed only to patients for whom the potential benefits are considered to outweigh the potential risk. Teriparatide should not be prescribed for patients who are at increased baseline risk for osteosarcoma (including those with Paget’s disease of bone or unexplained elevations of alkaline phosphatase, open epiphyses, or prior radiation therapy involving the skeleton) (see WARNINGS and PRECAUTIONS, Carcinogenesis).
Proportion of Patients in the Intention-to-Treat Population Who Had One or More New Vertebral Fractures, Assessed According to the Semiquantitative Method

49% 41%

Effects of Strontium Ranelate on Bone Mineral Density in All Patients Receiving 2 g a Day of Oral Strontium Ranelate

Strontium Ranelate-Induced Changes in Serum Biochemical Markers of Bone Metabolism

2004;350:459-468
Summary

- Osteoporosis is a disease with significant consequences
- Fractures can be prevented with multiple FDA approved agents that are proven to be very safe
- Bone densitometry is the best predictor of fractures in women without previous fractures
- Calcium and Vitamin D is part of every treatment regimen
- The goal of treatment is fracture reduction – this should be the primary marker of treatment efficacy.
- Understanding bone turnover can help us direct our treatment choices