Lupus Treatments and Research Updates

 Gary S. Gilkeson, MD Medical University of South Carolina

Last Saturday in Athens

Challenges in Developing SLE Treatments

- Waxing and waning course
- Heterogeneity of manifestations
- Variety of immunomodulating medications
- Each validated assessment instrument has strengths and limitations
 - Composite endpoint can rigorously demonstrate reduction in disease activity

Current Standard of Care

- Mild to moderate disease (rash, arthritis, serositis):
 - NSAIDs
 - Hydroxychloroquine (Plaquenil), DHEA (prasterone), corticosteroids
 - Azathioprine (Imuran), Methotrexate (Rheumatrex or Trexall), Mycophenolate mofetil
- Severe disease (renal, CNS):
 - Cyclophosphamide (Cytoxan) + steroids
 - Mycophenolate mofetil (Cellcept) + steroids
 - Rituximab (Rituxan) + steroids
- Refractory severe disease:
 - Pheresis
 - Bone marrow ablation +/- stem cell transplant

Things we do know

- Every lupus patient should be on an antimalarial (i.e. plaquenil)
 - Multiple trials have shown
 - Improved survival of patients on plaquenil
 - Fewer flares in patients on plaquenil
 - Less prednisone use
 - Decreased progression of disease
 - Improved outcomes in pregnancy with APL
 - ? Protection against cardiovascular disease

Things we do know (continued)

- In lupus nephritis, cellcept is equivalent to cytoxan in inducing improvement/remission
 - Cellcept appears more effective than CTX in African Americans

In lupus nephritis, cellcept is superior to imuran in maintaining remission/ renal function

In lupus nephritis the Eurolupus low dose CTX regimen is equivalent to high dose CTX (? AAs)

Remission Rates: MMF vs. IVC

Intent-to-Treat Analysis

Ginzler et al: NEJM 2005

New Targets for Treatment in Lupus

- Predisease state
- B cells
- Alpha interferon
- Cell Based Therapies
- TLRs
- Neutrophil Nets

Conceptual 2 Step Model of SLE Pathogenesis

Genetic risk factors act at different stages of lupus

Environmental factors in lupus

EBV

Silica pesticides/heavy metals

Smoking- current not past

Sunlight- flares

Drugs- anti-TNFs,

hydralazine

Vitamin D deficiency

New Targets for Therapy

Target #1-Predisease state

- Can we identify individuals predisease who are going to develop lupus?
- If we can, can we treat them with something to prevent disease?

First SLE Criterion

Time (years)

Arbuckle et al, NEJM 2006

Autoantibodies in First Degree Relatives

	All SLEIGH FDRs (N=144)	Female SLEIGH FDRs (N=111)	Male SLEIGH FDRs (N=33)	All LMRR FDRs (N=836)	LMRR AA Female FDRs (N=600)	LMRR AA Male FDRs (N=236)	p- value
ANA Positivity ≥1:40	47.9%	52.3%	33.3%	50.2%	54.7%	36.9%	0.61
ANA Positivity ≥1:120	34.7%	38.7%	21.2%	38.6%	42.5%	27.1%	0.37
ANA Titer > 1:1000	4.9%	5.4%	3.0%	6.9%	7.2%	5.5%	0.37
ANA Titer > 1:3000	2.8%	2.7%	3.0%	1.4%	1.0%	2.5%	0.22
Cardiolipin IgG > 20	6.9%	7.2%	6.1%	8.2%	8.6%	7.1%	0.60
Cardiolipin IgM > 20	0.7%	0.0%	3.0%	2.1%	1.9%	2.6%	0.26
dsDNA positive	1.4%	1.8%	0.0%	0.48%	0.7%	0.0%	0.21
Sm positive	0.7%	0.9%	0.0%	0.2%	0.3%	0.0%	0.29
RNP positive	2.8%	3.6%	0.0%	2.6%	2.5%	3.0%	0.89
Ro (SSA) positive	2.1%	2.7%	0.0%	2.8%	3.2%	1.7%	0.63
La (SSB) positive	0.0%	0.0%	0.0%	0.8%	1.2%	0.0%	0.28

Males and females similar rates of autoimmunity

Kamen, A and R, 2008

Predicting progression to lupus

- LAUREL study following FDRs over time
- 448 FDRs were followed average of 5 years
- 19 developed 4/11 criteria
- Predictors of progressing
 - Baseline CSQ score
 - Autoantibody progression
 - Markers of inflammation (high Blys, low APRIL)

Therapies to Prevent Disease

- If so, can we prevent progression to disease?
 - Plaquenil- clinical trials indicate patients on plaquenil have decreased progression of disease
 - Vitamin D- vitamin D deficiency associated with higher disease activity

Targeting B cells in Lupus

B-cell Subsets: Dependence on BLyS

B cell depletion as therapy in lupus

- Rituxan did not meet its endpoints for the treatment of lupus or lupus nephritis
 - ? B cells are not a good target in lupus
 - ? Wrong antibody isotype- proinflammatory IgG1
 - ? Study design- concomitant meds
 - All patients got IV medrol
 - Study only 52 weeks
 - ? Don't want to deplete all B cells
 - Breg cells make IL10 and may be important

BLyS

BLyS Is Elevated in Autoimmune Patients vs. Normal Subjects

Targets in the Blys/April Pathway

Belimumab Mechanism of Action

Efficacy of Benlysta

Phase 3

Primary Efficacy Results: SRI at Week 52

Other B cell directed therapies

Future Directions

- B cell depletion
 - Anti-CD19 antibodies deplete early B cell progenitors (pre-B cells)
- B cell costimulatory blockade
 - BAFF/BLyS blockade, antibodies to the BAFF-R, TACI:Fc,
 - anti-CD40,
 - anti-CD22 (epratuzamab)

Target #3- Interferons and Lupus

Interferon alpha in lupus

High serum IFN α levels demonstrated in lupus patients in the 1970s

 $\text{IFN}\alpha$ given for hepatitis C induces lupus in some individuals

Multiple groups demonstrate an "IFN signature" in PBMC gene expression in lupus patients

 $\mathsf{IFN}\alpha$ induces a lupus like disease in some

Crow et al, Arth Rheum 2005

Clinical trials in $\text{IFN}\gamma$

- Two different companies have ongoing phase III trials of anti-IFN $\!\alpha$ antibodies in lupus
- The antibodies do not bind all $\text{IFN}\alpha$ and likely bind different subsets
- Patients were not selected based on $\text{IFN}\alpha$ expression
- Trends, but not significant improvement
- No significant safety signal to this point

Target #4- Cell based therapies in Lupus

Stem cell therapy

Mesenchymal Stem Cells (MSCs)

MSC Efficacy in Animal Models of Disease

- Arthritis
- MS
- IBD
- Asthma
- GVH disease
- Type I diabetes

Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus

Arthritis & Rheumatism

<u>Volume 62, Issue 8, pages 2467-2475, 6 MAY 2010 DOI: 10.1002/art.27548</u> <u>http://onlinelibrary.wiley.com/doi/10.1002/art.27548/full#fig1</u> Results for 24-h proteinuria in 15 patients with refractory systemic lupus erythematosus before and after mesenchymal stem cells transplantation (MSCT).

ARD

Liang J et al. Ann Rheum Dis 2010;69:1423-1429

MSC issues

- Studies are uncontrolled and patients were all receiving concomitant meds
- MSCs cannot be mass produced and frozen as this processing decreases biologic activity
- Unclear if autologous or allogenic transplant is the best approach at this time- are lupus MSCs defective?

Target #5- Toll Like Receptors

TLRs in Lupus

- Deletion of TLR7 in lupus mice prevents production of anti-RNP autoantibodies and decreases disease
- Deletion of TLR9 in lupus mice diminishes production of anti-DNA antibodies but worsens disease
- Self DNA, RNA, HSPs and Hyaluronin can trigger TLRs
- TLR7/TLR9 inhibitor is in Phase I trials in lupus

Target #6- Neutrophil Nets

Low Density immature PMNs are detected in increased numbers in patients with lupus

The low density PMNs were shown to be high producers of IFN α

JE

Neutrophil Nets are composed of nuclear material and anti-microbials

Low density PMNs from lupus make neutrophil nets without stimuli

Treatment strategies for NETs

- Enhance nuclease activity (DNAse)
- Block interferon alpha
- Block TLRs
- Inhibit oxidative stress
- Block anti-LL37/anti-RNP antibody production
- Balance the positive with the negative

SUMMARY

- Multiple pathways lead to lupus
- Multiple targets are being studied and over 15 drugs are in clinical trials in humans in lupus
- Most of the genes/environmental triggers and disease mediators are not specific for lupus but are pathogenic in other immune diseases
- Most therapies for lupus will likely be effective in other diseases
- ? Best strategy is to determine individual patients genetics/gene expression to determine optimum therapy.